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Abstract

This paper extends to three dimensions and to convective heat transfer the constructal method of minimizing the

thermal resistance between a volume and one point. In the ®rst part of the paper, the heat ¯ow mechanism is
conduction, and the heat generating volume is occupied by low conductivity material (k0) and high conductivity
inserts (kp). At the elemental-volume level the inserts are shaped as constant-thickness disks. In the ®rst assembly
the disks are mounted on a common stem of kp material. The internal and external geometric aspect ratios of the

elemental volume and the ®rst assembly are optimized numerically subject to volume constraints. In the second part
of the paper the interstitial spaces once occupied by k0 material are bathed by forced convection. The kp inserts
function as `®n material', and the ®rst assembly becomes a ®n bush with cylindrical symmetry. The geometry of the

®rst assembly is optimized subject to total volume and solid volume constraints. The optimal number of circular
®ns, the optimal external shape of the assembly, the optimal ratio of the central stem diameter divided by the
circular ®n thickness, and the maximized global conductance of the assembly are reported as functions of the

external ¯ow (pressure drop number) and volume fraction of ®n material. It is also shown that the optimization
sequence can be shortened (albeit with approximate results) by adopting at the ®rst-assembly level the internal
geometric aspect ratios that were optimized independently at the elemental-volume level. # 1999 Elsevier Science
Ltd. All rights reserved.

1. Objectives

The primary objective of this work is to extend to

three-dimensional heat transfer the constructal method

of minimizing geometrically the thermal resistance

between a volume and one point. We pursue this

objective by using volume elements and assemblies that

possess cylindrical symmetry. This is an important step

toward the optimization of real heat transfer devices,

as the constructal method was originally based on the

simplifying assumption that the ¯ow of heat is two-

dimensional [1,2]. The given volume generated heat at

every point in a material with low thermal conductivity

(k0). A small amount of high thermal conductivity ma-

terial (kp) was distributed in the form of blade inserts

through the k0 medium.

The minimization of the overall volume-to-point

thermal resistance consisted of `constructing' the given

volume in a sequence of building blocks that proceeds

from the smallest size toward larger sizes (assemblies

of smaller volumes). It is discovered that the shape of

each block can be optimized such as its own volume-

to-point resistance is minimal. The optimization con-

tinued with the optimal allocation of kp material to the

high-conductivity blade of each building block. In the
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end, the optimized path for volume-to-point heat ¯ow
emerged as a geometric structure in which every fea-

ture is deterministic. The high-conductivity paths

formed a tree network, while the low-conductivity ma-
terial ®lled the interstitial spaces contained between the

smallest blades. Access to the in®nity of points of the

Nomenclature

a, b constants, Eqs. (19) and (21)
Ac cross sectional area
cp ¯uid speci®c heat and constant pressure

D0, D1 thicknesses of kp parts
h0, h1 heat transfer coe�cients
hÃ ratio of heat transfer coe�cients, h1/h0
H0 elemental length
H1 diameter
k0 low thermal conductivity

kp high thermal conductivity
kÄ ratio of thermal conductivities, kp/k0
L1 length
m parameter, Eq. (16)

n1 number of elemental volumes
p perimeter
Pr Prandtl number, n/a
q0, q1 heat currents
q0 ' volumetric heat generation rate
Re Reynolds number, U1V

1/3
1 /n

T solid temperature
Tb base temperature
Ts stem temperature

T1 free stream temperature
U1 free stream velocity
V0, V1 volumes
Vp0, Vp1 volumes ®lled by kp material

Greek symbols
a ¯uid thermal di�usivity
DP pressure di�erence

Z ®n e�ciency
m viscosity
n kinematic viscosity
P pressure drop number, Eq. (23)

r ¯uid density
f0, f1 volume fractions occupied by kp material

Subscripts

mm minimized twice
opt optimum
peak peak, largest value
0 elemental volume

1 ®rst-assembly volume

Superscripts
( Ä ) dimensionless notation, Eqs. (3) and (4)

( Ã ) dimensionless notation, Eqs. (10) and (11)
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heat-generating volume was made possible by the ther-

mal di�usion through the k0 material. The importance

of the deterministic character of the volume-to-point

¯ow structure and its generating principle was recog-

nized in subsequent publications in the physics litera-

ture [3±7].

The second objective of the present work is to

extend the minimization of volume-to-point resistance

to conductive materials with compositions that depart

from the asymptotic assumptions made in the earlier

publications. Those assumptions were: (1) the ratio kp/

k0 is much greater than 1, and (2) the volume fraction

occupied by the kp material is much smaller than 1. In

the present study the conductivity ratio and the

volume fraction are two unspeci®ed design parameters

of the conductive composite.

The third objective is also the most novel and, po-

tentially, the most useful. It is to take the constructal

resistance-minimization method out of the ®eld of con-

ductive heat transfer and to apply it to its analog in
convection: the optimization of the architecture of a
tree of ®ns that connects with minimal resistance a

boundary point (the ®n root) to volume with convec-
tive ¯uid that is allocated to that point.

2. Conduction

2.1. Elemental volume

The geometric optimization work begins with divid-

ing the given volume into building blocks of increasing
sizes. The smallest such block is the `elemental volume'
shown in the upper part of Fig. 1. Most of this small

volume is occupied by low-conductivity material (k0)
that generates heat at the uniform volumetric rate q1.
The volume is ®xed,

Fig. 1. Elemental volume for conduction in a heat-generating composite (k0, kp) with cylindrical symmetry, and the ®rst optimiz-

ation with respect to the external aspect ratio H0/H1.
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V0 � p
4
H 2

1H0 �1�

but the geometric aspect ratio H0/H1 may vary. The
generated heat current (q0) is collected ®rst by a disk-

shaped insert of high thermal conductivity (kp, D0,
H1), and then taken out of the system through an axial
stem (kp, D1, H0). Heat is not being generated inside
the kp material. The outer surface of the elemental

volume V0 is insulated, except over the heat-sink patch
of diameter D1, where the temperature is set equal to
zero. The volume of the kp material allocated to the el-

emental volume is also constrained:

Vp0 � p
4
�D2

1�H0 ÿD0� �H 2
1D0� �2�

In accordance with the notation used in earlier con-
structal-theory papers, we express this constraint as the

dimensionless volume fraction f0=Vp0/V0.
In the steady state the temperature ®eld established

outside V0 drives the total heat current toward the
heat sink. We are interested in the magnitude and lo-

cation of the peak temperature (Tpeak), and in minimiz-
ing Tpeak by changing the geometry of the elemental
volume. The peak temperature will occur along the

ring of diameter H1 that is situated the farthest from
the heat sink.
The geometry of the elemental volume constrained

by Eqs. (1) and (2) is represented by the external ratio
H0/H1 and the internal ratio D1/D0. In principle, there
is a third geometric parameter (a second internal ratio)
that can be varied: the relative position of the D0 disk

on the D1 stem of length H0. We simpli®ed this study
by placing the D0 disk in the midplane of the elemental
volume, with the expectation that the ring of diameter

H1 that resides in the plane of the heat sink experi-
ences a temperature comparable to, but somewhat
lower than Tpeak.

The equation for steady-state conduction with in-
ternal heat generation in cylindrical coordinates and
the boundary conditions around V0 are not listed here.

We solved the conduction problem numerically by ®rst
de®ning the dimensionless variables

� ~H 0, ~D 0, ~H 1, ~D 1� � �H0, D0, H1, D1�=V 1=3
0 �3�

~T � T

q1V 2=3
0 =k0

�4�

such that the volume constraints (1) and (2) become

~H
2

1
~H 0 � 4

p
�5�

f0 �
p
4
� ~D

2

1� ~H 0 ÿ ~D 0� � ~H
2

1
~D 0� �6�

The dimensionless version of the conduction equation

and the interface conditions (the continuity of heat
¯ux) between the k0 and kp regions contains two
dimensionless groups: f0 and the conductivity ratio
kÄ=kp/k0.

The temperature ®eld solution was determined by
the ®nite element method. The code [8] was chosen
because the optimization work required a reliable and

¯exible solver capable of generating e�ciently a large
number of simulations for many geometries. The
method was based on quadrilateral elements with

biquadratic interpolation function. The grid was uni-
form in the radial and axial directions, with 40 and 60
nodes, respectively. The ®neness of this mesh was
selected based on accuracy tests. For example, if the

number of nodes is doubled in both the radial and
axial directions, the dimensionless peak temperature
changes by less than 0.5%.

The accuracy of the ®nite element method results
(FE) was tested by comparing them with results based
on our own ®nite di�erence code (FD). The smallest

element was considered in the comparison. The discre-
tized heat transfer equations were solved using
Cholesky's method. The grid was uniform with 40

Table 1

Comparison between the overall elemental-volume resistances calculated with the ®nite-elements and ®nite-di�erences codes

kÄ f0 D1/D0 H0/H1 TÄpeak(FE) TÄpeak(FD)

100 0.1 60 0.1 0.0946 0.0959

100 0.2 20 0.45 0.0703 0.0705

200 0.05 55 0.5 0.1295 0.1307

200 0.2 25 0.2 0.0280 0.0282

300 0.03 40 0.6 0.1525 0.1539

300 0.1 30 0.15 0.0367 0.0371

600 0.01 45 0.35 0.1872 0.1913

600 0.05 15 0.55 0.0865 0.0867

1000 0.01 50 0.3 0.1326 0.1354

1000 0.03 10 0.6 0.1023 0.1027

A. Alebrahim, A. Bejan / Int. J. Heat Mass Transfer 42 (1999) 3585±35973588



nodes in the r-direction, and 60 nodes in the z-direc-
tion. Table 1 shows a comparison between the two sets

of results (FE, FD) for the corner hot-spot tempera-
ture TÄpeak at di�erent values of kÄ, f0, D1/D0 and H0/
H1. The agreement is consistently within 2.5%.

The numerical procedure consisted of ®xing the geo-
metrical con®guration (kÄ, f0, H0/H1, D1/D0), calculat-
ing TÄpeak, and then changing the geometry in two ways

(H0/H1 and D1/D0) in order to minimize TÄpeak. The
double optimization sequence started with assuming a
value for D1/D0 and minimizing TÄpeak with respect to
the external ratio H0/H1, as shown in the lower part of

Fig. 1. In this step we used a version of constraint
(5) that contained explicitly the external ratio: HÄ 0=
(4/p )1/3(H0/H1)

2/3. The results for the minimized

peak temperature TÄpeak,m and the optimal external
ratio (H0/H1)opt are shown in Fig. 2.
In the second step we minimized TÄpeak,m one more

time by varying the internal ratio D1/D0. This step is il-
lustrated in Fig. 2. The results are the twice-minimized
peak temperature TÄpeak,mm, the optimal internal ratio

(D1/D0)opt and the optimal external ratio (H0/H1)opt
that corresponds to (D0/D0)opt. These results are
reported in Fig. 3, which also shows that the entire
double-optimization was repeated for many property

combinations of conductive composites (kÄ, f0). The
data obtained for the twice-minimized peak tempera-
ture are correlated within 0.75% by the power law

~T peak,mm � 0:27 ~k
ÿ0:67

fÿ0:880 �7�

where it should be noted that TÄpeak,mm also represents
the twice-minimized thermal resistance between the
elemental volume and its D1-size boundary heat sink.

The kÄ and f0 e�ects revealed by Fig. 3 and Eq. (7) are
comparable with the trends derived analytically for the

two-dimensional elemental volume [1,2], where the
twice-minimized thermal resistance was found to be
proportional to (kÄf0)

ÿ1/2.
The in¯uence of kÄ and f0 on the optimal internal

ratio is more interesting (Fig. 3, middle). When f0 is
greater than approximately 0.1, the ratio (D1/D0)opt
increases monotonically as kÄ and f0 increase. These
trends are analogous to the results found for two-
dimensional conduction (namely, Eq. (32) in Ref. [2]),
where the optimal internal thickness ratio was equal to

(kÄf0)
1/2. When f0 is considerably smaller than 0.1, the

ratio (D1/D0)opt becomes less sensitive to changes in kÄ,
and when f0=0.01 it decreases as kÄ increases.

The optimal external aspect ratio decreases as both
kÄ and f0 increase. The data reported in the bottom
frame of Fig. 3 are correlated within 0.75% by�
H0

H1

�
opt

� 0:43 ~k
ÿ0:39

fÿ0:510 �8�

This behavior is almost the same as in the case of the
two-dimensional elemental volume optimized in Ref.
[2], in which the optimized external aspect ratio was

shown to be equal to 2(kÄf0)
ÿ1/2.

In summary, the geometrical form of the elemental
volume of Fig. 1 can be optimized with respect to two

degrees of freedom, the external ratio H0/H1 and the
internal ratio D1/D0. The similarities between the
results of this double optimization (Fig. 3) and the cor-

responding results for the two-dimensional elemental
volume [1,2] strengthen our con®dence in the present
numerical work. These similarities indicate that the op-

Fig. 2. The second optimization of the elemental volume with respect to the internal aspect ratio D1/D0.
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timal shapes at the elemental level are not in¯uenced
greatly by the two-dimensionality or three-dimension-
ality of the con®guration.

The more practical conclusion that sends us in the
direction pursued in the next section is that even in the
twice optimized elemental volume the largest tempera-

ture di�erence will continue to increase proportionally
with the size of the elemental volume [review the TÄ de®-
nition (4)]. Can this increase be slowed down by mak-

ing additional changes in the geometrical form? The
answer is `yes': further improvements are possible if, in
addition to the features optimized in this section, we

increase the internal complexity of the given volume.

2.2. First assembly

Consider next the volume V1=(p/4)H 2
1L1 shown in

the upper part of Fig. 4. To increase the complexity of
this volume relative to that of Fig. 1, we took a num-
ber of (n1) of elemental volumes and strung them up

on a central stem of diameter D1 and length L1. In this
way the structure of Fig. 4 becomes a `®rst assembly'
in the sense of constructal theory. The outer surface of

the V1 volume is insulated except over the axial spot
of diameter D1, which acts as heat sink (T=0). Fixed
in the ®rst assembly are the total volume V1 and the

volume of high-conductivity material,

Fig. 3. The twice-minimized peak temperature, optimal internal aspect ratio, and optimal external aspect ratio of the elemental

volume.
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Vp1 � n1
p
4
H 2

1D0 � n1
p
4
D2

1�H0 ÿD0� �9�

The numerical formulation and procedure for deter-
mining the temperature ®eld and Tpeak are the same as

in section 2.1. As length scale we use V 1/3
1 such that

the new dimensionless variables become

�Ĥ0, D̂0, Ĥ1, L̂1, D̂1� � �H0, D0, H1, L1, D1�=V 1=3
1 �10�

T̂ � T

q1V 2=3
1 =k0

�11�

The dimensionless kp-volume constraint (9) assumes

the form

f1 �
Vp1

V1
� p

4
�n1Ĥ2

1D̂0 � n1D̂
2

1�Ĥ0 ÿ D̂0�� �12�

The complete dimensionless formulation of the con-
duction problem in the volume V1 (conduction
equation, boundary conditions, and heat ¯ux continu-

ity between the k0 and kp regions) depends on two

dimensionless parameters of the composite medium: kÄ

and f0. These parameters are ®xed during each act of

geometric optimization.

The dimensionless peak temperature TÃpeak (see the

upper right-hand corner of Fig. 4) depends on three
dimensionless variables of the ®rst-assembly geometry:

the external aspect ratio H1/L1 and the internal ratios

H0/H1 and D1/D0. Note that one of these variables

(for example, H0/H1) can be replaced by the number
n1, because n1=L1/H0. The following results were

developed by using n1, H1/L1 and D1/D0 as variables.

It is worth noting that when n1 varies at constant V1,

the elemental volume surrounding a single D0 disk
(i.e., V0=V1/n1) varies.

To build on the numerical algorithm developed in

Section 2.1, in the ®rst assembly we began the optimiz-

ation by ®xing n1 and minimizing TÃpeak twice, with

respect to H0/H1 and D1/D0. This procedure is ana-
logous to what we reported in Figs. 1 and 2, and is

illustrated now for n1=2 and n1=4 in Figs 4 and 5.

Fig. 4. The ®rst assembly containing n1 elemental systems cooled by the same central stem, and the optimization with respect to

the aspect ratio H0/H1.
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The twice minimized overall resistance and the opti-

mized internal and external geometric ratios are
reported in Fig. 6.

We repeated the double optimization procedure for

higher n1 values, in order to document the e�ect that

the internal complexity has on the overall performance.
The internal ratio (D1/D0)opt increases almost propor-

tionally with n1. The ratio (H0/H1)opt decreases mono-

tonically as n1 increases and, consequently, the
corresponding external aspect ratio (L1/H1)opt is nearly

constant. It can be veri®ed that when n1r4, the exter-

nal ratio approaches (L1/H1)opt30.3: this invariant of
the optimized geometry is similar to the one encoun-

tered in two-dimensional trees for heat conduction

[1±3]. The twice-minimized resistance of the assembly
decreases monotonically as the number of elemental

volumes increases.

We also varied the construction characteristics of

the conductive composite in order to widen the (kÄ, f0)
domain of the design optimum. The results obtained

for (kÄ=30, f1=0.1) and (kÄ=300, f1=0.01) have been

projected on the same Fig. 6. The e�ects of kÄ and f0

on TÃpeak,mm are expected: the overall resistance
decreases when kÄ and f0 increases. The internal and

external aspect ratios (D1/D0)opt [and, correspondingly,
(L1/H1)opt] are relatively less sensitive to order-of-mag-
nitude changes in both kÄ and f0. These observations

strengthen the invariant noted in the preceding para-
graph. The optimized internal and external geometry is
relatively robust, i.e., insensitive to small changes in

material properties and amounts. We return to these
properties of the optimized structure in Section 5.

3. Convection

The convection equivalent of the ®rst assembly
de®ned in Fig. 4 is the construct shown in the upper
part of Fig. 7. The only solid is the kp material that

®lls the D0 disks and the D1 stem. Heat transfer occurs
between the root disk D1 and the ¯uid (T1) that ¯ows
along the faces of the D0 disks. The total volume

[V1=(p/4)H 2
1L1] and the volume fraction occupied by

the solid (f1=Vp1/V1) are ®xed. The number of D0

®ns installed on the stem is n1. We seek to minimize

the overall resistance by varying the external and in-
ternal geometric features of the assembly.
The overall resistance can be calculated in two steps.

Fig. 5. The second optimization of the ®rst assembly with respect to the internal aspect ratio D1/D0.
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First, we evaluate the heat transfer rate collected by

the stem from each disk.

q0 � Z
p
2
�H 2

1 ÿD2
1�h0�Ts ÿ T1� �13�

where the constant h0 is the heat transfer coe�cient on
both sides of the D0-thin plate. The ®n e�ciency Z is
available in terms of Bessel functions [9], and is a func-

tion of two dimensionless parameters,

Z � function

"�
H1

2
ÿ D1

2

��
2h0
kpD0

�1=2

,
H1

D1

#
�14�

In the second step we average the q0 e�ect of one cir-
cular ®n over the stem surface of length H0, which
belongs to one ®n. The heat ¯ux q0/(pD1/H0) can be

used to de®ne an equivalent heat transfer coe�cient

h1,

q0
pD1H0

� h1�Ts ÿ T1� �15�

as if the stem, alone, were transferring heat to the
¯ow. If we assume that the circular plate ®ns are suf-
®ciently numerous and close to each other, then the D1

stem performs as a one-dimensional ®n with insulated
end and uniform heat transfer coe�cient h1. The total
heat transfer rate through the base (Tb) is given by the

classical formula

q1 � �Tb ÿ T1��kpAch1p�1=2 tanh�mL1� �16�

where Ac=(p/4)D 2
1, p=pD1 and m=(h1p/kpAc)

1/2. Eq.
(16) can be nondimensionalized by using V 1/3

1 as length

Fig. 6. The e�ect of the number of elemental volumes n1 on the optimized geometry and performance of the ®rst assembly.
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scale (10) and hÃ=h1/h0. The resulting overall thermal
conductance

q̂1 �
q1

�Tb ÿ T1��kpV1h0�1=2

� p
2
D̂

3=2

1 ĥ
1=2

tanh

242L̂1

 
ĥ

D̂1

!1=2
h1=20 V 1=6

1

k1=2p

35 �17�

shows the emergence of the dimensionless group

h 1/2
0 V 1/6

1 /k 1/2
p . We seek an estimate for the heat transfer

coe�cient h0, and note that it will vary with the
dimensions of the spacing between two consecutive

®ns. In order to reduce the number of geometric
degrees of freedom in the optimization of the V1

assembly, we make the assumption that the shape of

the space between consecutive ®ns has already been
optimized for maximum conductance. Recent reviews
on the geometric optimization of arrangements of elec-

tronics in constrained spaces have shown that in lami-
nar forced convection the optimal spacing (in our case,
H0ÿD0) scales with the swept ¯ow length (H1) in the

following proportion [10±13]

H0 ÿD0

H1
0
� ma
H 2

1DP

�1=4

�18�

The pressure di�erence DP is maintained by a fan in
order to drive the ¯ow through the assembly of Fig. 7.
Nondimensionalized, Eq. (18) becomes

Ĥ0 ÿ D̂1

Ĥ
1=2

1

� a �19�

where a=(ma/V 2/3
1 DP )1/4 is a dimensionless parameter.

This optimal-interstice design is characterized by a
maximum conductance [10,11] that can be rewritten as
an estimate for the order of magnitude of the inter-

Fig. 7. First assembly with convective heat transfer in the interstices, and the double optimization of the geometric con®guration.
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stitial heat transfer coe�cient:

h00
�
rDP
Pr

�1=2

cp �20�

In this way the heat transfer coe�cient h0 emerges as a
constant set by the fan (DP ), which is why h0 is used
as a constant in the de®nitions of qÃ1 and hÃ. The dimen-

sionless group revealed by Eq. (17) assumes the form

h1=20 V 1=6
1

k1=2p

� b �21�

where b=[(cpV
1/3
1 /kp)(rDP/Pr )

1/2]1/2 is another par-

ameter. It can be shown that parameters a and b are
related through the pressure drop number P,

a � Pÿ1=4, b �
�
k

kp

�1=2

P1=4 �22�

where the pressure drop number is de®ned as [11,12]

P � DPV 2=3
1

ma
�23�

The rest of the problem statement can be put in the
same nondimensional notation as Eq. (17). Eqs. (13)
and (15) provide the needed expression for hÃ,

Fig. 8. The number of elemental volumes, optimal external aspect ratio, and twice-maximized conductance of the ®rst assembly

with convective heat transfer.
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Fig. 9. The twice-minimized overall resistance of the conductive ®rst assemblies optimized using the design method and the growth

method.

ĥ � 2Z

D̂1Ĥ0

�Ĥ2

1 ÿ D̂
2

1� �24�

The ®n e�ciency (14) assumes the dimensionless form

Z � function��Ĥ1 ÿ D̂1�b=�2D̂0�1=2, Ĥ1=D̂1� �25�
The geometric relations are the total-volume con-
straint, the solid-fraction volume constraint, and the
number of circular plate ®ns,

Ĥ
2

1L̂1 � 4=p �26�

f1 � n1
p
4
�Ĥ2

1 ÿ D̂
2

1�D̂0 � p
4
D̂

2

1L̂1 �27�

n1 � L̂1=Ĥ0 �28�
In summary, there are seven equations [namely, (17),
(19), (24)±(28)] that contain nine dimensionless vari-
ables, HÃ 1, DÃ1, LÃ1, HÃ 0, DÃ0, n1, qÃ1, hÃ and Z. The design

has two degrees of freedom, one external and the other
internal, namely H1/L1 and n1, or H1L1 and D1/D0.
The physical parameters f1, P, and kp/k are ®xed, and

play the role of constraints. The objective is to maxi-
mize qÃ1 in two dimensions subject to the constraints.
This procedure is illustrated for one case in the lower

part of Fig. 7, where it is found that the best geometry
is represented by n1,opt=6 and (H1/L1)opt=1.696.
We repeated this double optimization for other com-

binations of solid volume fraction f1 and pressure

drop number P. All this work was conducted by set-
ting kp/k=104, which is the correct order of magnitude

for the combination of copper in the solid part and
room air in the ¯uid part. The results are presented in

Fig. 8. The twice maximized conductance qÃ1,mm

increases monotonically with both f1 and P, which is
the expected trend. The optimal number of elements

increases slowly as P increases: this trend is almost
insensitive to f1 when f1 is of the order of 0.1 or
smaller. The external aspect ratio (H1/L1)opt is more

sensitive to changes in P because the interstitial spaces
H0 become narrower as P increases [cf. Eq. (18)].
The body of work on the geometric optimization of

electronic packages [13] shows that the e�ect of the

pressure drop number P can be expressed more readily
in terms of the free stream velocity of the stream. The
order of magnitude of DP is rU 2

1 and this transforms

the de®nition (22) into

P � Re2Pr �29�
where Re=U1V

1/3
1 /n and Pr=n/a. The pressure drop

number accounts for the free stream velocity squared.

4. The `design' method vs the `growth' method

All the optimization work performed for the ®rst
assembly with internal conduction (Section 2.2) and in-
ternal convection (Section 3) was one of `designing' the

interior of a volume (V1) that is ®xed. All the geo-
metric features Ðinternal and externalÐwere allowed
to vary freely during the design. We refer to this

approach of working `inward' as the `design method'.
A more direct alternative is to proceed `outward'
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and to buildÐto growÐthe volume V1 from an appro-
priate number of optimized elemental volumes [1,2].

We refer to this approach as the `growth method'. In
this case the aspect ratios of the elemental volume (D1/
D0, H0/H1) are taken from the elemental results of sec-

tion 2.1 (Fig. 3), and are no longer free to vary in the
optimization of the ®rst assembly. The advantage of
the growth method is that the number of degrees of

freedom at the ®rst-assembly level is smaller, which is
why the growth method is more direct and compu-
tationally less expensive.

How accurate is the growth method in relation to
the more rigorous design method? In Fig. 9 we show
the minimized overall resistance of a ®rst assembly
(kÄ=300, f1=0.1) optimized using the two methods.

The result produced by the design method is the same
as the TÃpeak,mm curve shown in Fig. 6: the global resist-
ance decreases monotonically as n1 increases, however,

diminishing returns are registered with n1 becomes
greater than 4. The curve for the growth method was
generated for the same volume V1 by ®xing n1 and

using in the ®rst-assembly design the (D1/D0)opt and
(H0/H1)opt ratios read from Fig. 3 for kÄ=300. We
learn from Fig. 9 that according to the growth method

there is an optimal number of elements (n1), whereas
in the design method the overall resistance decreases
monotonically as n1 increases. The minimum of the
growth curve occurs at an n1 value that can also be as-

sociated with the point of diminishing returns that is
reached along the design curve.
In conclusion, the growth method can be used as

shortcut to designs that approach the performance of
the truly optimal con®guration that is generated by the
design method. The con®guration produced by the

growth method can be re®ned later based on the de-
sign method. It can also be used as ®rst guess in op-
timization routines based on the design method. That
the `growth' and the `design' con®gurations perform

similarly even though their internal geometries di�er is
an indication that when the structure is su�ciently
complex, the internal details play a minor role in the

global performance of the optimized ¯ow system. The
same conclusion was reached in two-dimensional
point-to-volume ¯ows [2,3], and is an important fea-

ture in natural ¯ow structures. Several other simi-
larities between the present three-dimensional
structures and the two-dimensional trees were signaled

at various stages in the main body of this paper.
Unlike in two-dimensional systems, the present op-

timization sequence cannot be extended routinely to
assemblies of higher order, because of the cylindrical

symmetry adopted for the elemental system and the
®rst assembly. A second assembly could be formed by

mounting two or more ®rst assemblies on a new cen-
tral stem of diameter D2 and length L2, like buds or
pine cones on a branch. The structure of such an

assembly will not ®ll its allotted volume completely.
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